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We consider a class of solutions of the Boltzmann equation with infinite energy.
Using the Fourier-transformed Boltzmann equation, we prove the existence of
a wide class of solutions of this kind. They fall into subclasses, labelled by a
parameter a, and are shown to be asymptotic (in a very precise sense) to the self-
similar one with the same value of a (and the same mass). Specializing to the
case of a Maxwell-isotropic cross section, we give evidence to the effect that the
only self-similar closed form solutions are the BKW mode and the two solutions
recently found by the authors. All the self-similar solutions discussed in this
paper are eternal, i.e., they exist for −. < t <., which shows that a recent
conjecture cannot be extended to solutions with infinite energy. Eternal solu-
tions with finite moments of all orders, and different from a Maxwellian, are
also studied. It is shown that these solutions cannot be positive. Moreover all
such solutions (partly negative) must be asymptotically (for large negative
times) close to the exact eternal solution of BKW type.
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1. INTRODUCTION

We consider a class of solutions of the Boltzmann equation which can be
constructed starting from rather peculiar, self-similar solutions with infinite
energy. We were led to considering these solution by the interesting ques-
tion of extending the solution for the structure of an infinitely strong shock
wave from the case of hard spheres (or cutoff potentials) (1–3) to that of
molecules interacting at distance. This connection will be discussed in



Section 2. We show that the problem can be formulated in terms of the
space homogeneous BE. Moreover it is connected with the old question
concerning large time asymptotics of solutions with infinite energy.
In Section 3 we give an accurate statement of the problem we are going

to consider. In Section 4 we detail the Fourier-transformed Boltzmann
equation and prove that its solution in the space homogeneous case exists
and is unique in the class of locally bounded functions, for cutoff Maxwell
molecules and f0 ¥ L

1
+, without any further assumption. In Section 5 we

describe a series representation for solutions with infinite second moments,
and give estimates for the coefficients of the series, which guarantee its
convergence. Among these solutions there are some which are self-similar.
Apart from constants which are related to simple invariance properties,
these solutions turn out to depend on a parameter a, taking values between
0 and 1. There is essentially one solution for each value of this parameter.
A similar representation was considered 25 years ago when one of the

authors (4) constructed self-similar solutions with finite energy. These solu-
tions obey the same equation as our solutions, but with a > 1. Several
authors (see refs. 5 and 6 for a review) considered these solutions in more
detail and finally it was proved by Barnsley and Cornille (7) (for the simplest
case) that all these solutions, except the so-called ‘‘BKW-mode,’’ (8–10) do
not correspond to positive distribution functions. Thus those solutions do
not appear to be useful for applications.
In Section 6 we state and prove the existence of the solutions discussed

in the previous section and prove that a solution which is not self-similar is
asymptotic (in a very precise sense) to the self-similar one with the same
value of a. The main results of Sections 3–6 are given by Theorems 6.1–6.3.
In Section 7 we consider the case of a Maxwell-isotropic cross section

and give evidence to the effect that the only self-similar closed form solu-
tions are the BKW mode and the solution previously found by the
authors. (11, 12) We also give an example of a positive initial datum for the
functions represented by the series utilized in Sections 5 and 6.
The self-similar solutions discussed in this paper are eternal, i.e., they

exist for −. < t <., which shows that a recent conjecture (13) cannot be
extended to solutions with infinite energy. We remark that multiplying any
solution in the Fourier space by a Maxwellian, we obtain an eternal solu-
tion which tends to this Maxwellian at t=−.. This also makes the distri-
bution function infinitely smooth (Section 8).
Section 8 is devoted to eternal solutions with finite moments of all

orders. First we prove that such solutions cannot be positive. Then we
study possible partly negative solutions and give ample evidence in favor
of the fact, for large negative times, that they must be close to an exact
self-similar solution of BKW type. This result may be considered as an
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unexpected answer to the old question related to the so-called Krook–Wu
conjecture: (14) does this simple solution play any special (asymptotic) role?
The answer we give is ‘‘yes,’’ but in the non-physical domain of large
negative times and partly negative solutions.

2. CONNECTION WITH THE SHOCK-WAVE PROBLEM.

Recently Grad’s conjecture (1) that there is a solution of the Boltzmann
equation describing the structure of an infinite Mach number shock wave,
was successfully tested by numerical methods of both Monte Carlo (2) and
deterministic nature. (3) For molecules without angular cutoff, the assump-
tion by Grad (a delta plus a regular function) does not hold. Monte Carlo
simulations (15) seem to indicate, however, that a solution exists in this case
as well.
This revives the interest in a paper by Pomeau, (16) who proposed an

approach where the delta term is replaced by an approximate self-similar
solution. Pomeau’s idea is crystal-clear but his exposition is not. Here we
make his conjecture precise.
The idea is that there is an asymptotic solution for xQ −. of the

Boltzmann equation having the following form:

f(x, v)=|x|3n F(v |x|n sgn(x))

where, if t is the molecular velocity and u0 the bulk speed upstream,
v=t−u0i, and F is normalized to a constant:

F F(w) dw=c

Then we also have

F f(v) dv=c

If n > 0, for xQ −., f tends to a delta (multiplied by c). Let us insert this
ansatz into the steady Boltzmann equation with plane symmetry: (17)

t1fx=Q(f, f) (t1=t · i)

Then we obtain for a power-law intermolecular potential U(r) 5 r1−s:

(u0+v1)(3n |x|3n−1 F+n |x|4n−1 v ·Fw)=Q(f, f) |x|3n(1−
s−5
s−1
)
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where the differentiation in Fw and integration in the collision term are
made with respect to the variable

w=v |x|n sgn(x)

Let us rewrite the equation in terms of w:

(u0+w1 |x|−n)(3n |x|3n−1 F+n |x|3n−1 w) ·Fw)=Q(F, F) |x|3n(1−
s−5
s−1
)

The fact that F is only an asymptotic and not an exact solution arises from
the fact that we cannot make x disappear. In order to do that we must
neglect the second term in the factor (u0+w1 |x|−n). This term tends to zero
for a fixed value of w when xQ −.. Then x disappears if we choose

n=
s−1
s−5

In fact, we have:

u0(3nF+nw ·Fw)=Q(F, F)

The method does not seem to work for Maxwell molecules (s=5), but in
this case one can make the alternative ansatz:

f(x, v)=e3lxF(velx)

to obtain

(u0+w1elx)(3le3lxF+le3lxw ·Fw)=Q(F, F) e3lx

If we neglect again the second term in the first factor, we get rid of x:

u0(3lF+lw ·Fw)=Q(F, F) (2.1)

The approximation is not uniformly valid. This has the result that the
second order moment cannot exist. In fact if we multiply by |w|2 and
integrate formally, we have a contradiction.
We remark that, if we go back to the x and v variables, f now satisfies

u0fx=Q(f, f)

which looks like the space homogeneous Boltzmann equation with time
t=x/u0, as already indicated by Pomeau, (16) who from this inferred that
the solution should not have finite energy.
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The last remark shows that the same equation as (2.1) follows from
the homogeneous Boltzmann equation

ft=Q(f, f)

when we let

f(t, v)=e−3ltF(ve−lt)

Having thus motivated our interest in this kind of solutions, we start a
detailed study of the solutions of the space homogeneous Boltzmann equa-
tion, with a specific concern for those which do not possess finite moments
of second order.

3. MAXWELL MOLECULES. STATEMENT OF THE PROBLEM

Let f(v, t) (where v ¥R3 and t ¥R+ are the velocity and time
variables) be a distribution function normalized by

F
R
3
dv f(v)=1 (3.1)

and satisfying the homogeneous Boltzmann equation forMaxwell’s molecules:

ft=F
R
3×S2
dw dn g 1V ·n

|V|
2[f(vŒ) f(wŒ)−f(v) f(w)] (3.2)

where, for simplicity, we do not indicate the time dependence of f in the
collision term, and

V=v−w, vŒ=1
2(v+w+|V| n), wŒ=1

2(v+w−|V| n), n ¥ S2

g(cos h) denotes the scattering cross section multiplied by |V| and, as such,
it is independent of |V| for Maxwell molecules. The ‘‘true’’ cross section for
Maxwell’s potential (inversely proportional to r−4) leads to the asymptotic
behavior (17) g(m) 5 (1−m)−5/4 as mQ 1. Therefore we sometimes consider
a cutoff collision operator (pseudo-Maxwell molecules) with g ¥ L1(−1, 1)
and normalize g(m) is such a way that

F
S2
dn g 1V ·n

|V|
2=2p F 1

−1
g(m) dm=1 (3.3)
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by an appropriate scaling of the time variable in (3.2). The conditions (3.1),
(3.3) allow us to write Eq. (3.2) (in the cutoff case) and the corresponding
initial condition as

ft=Q+(f, f)−f, f|t=0=f0 (3.4)

where f0 ¥ L
1
+ is normalized by Eq. (3.1).

The solution of the initial value problem (3.4) is given by the so-called
Wild sum: (18)

f(v, t)=e−t C
.

k=0
(1−e−t)n fn(v) (3.5)

where f0 is the initial distribution function in (3.4) and

fn+1=
1
n+1

C
n

k=0
Q+(fk, fn−k), n=0, 1,... (3.6)

Then it can be easily shown that the series (3.5) converges for any t > 0
and any f0 ¥ L

1
+(R

3); moreover f ¥ L1+(R
3) and satisfies the condition

in (3.1). The solution for true Maxwell molecules can be constructed as the
limit of the previous solution for a vanishing angular cutoff. It is clear
that a solution of this kind can also be defined for any initial condition
f0 ¥ L

1
+(R

3). The spatially homogeneous problem for Maxwell molecules
has been previously studied in detail (see, in particular, the review of
ref. 19). However, to the best of our knowledge, one interesting question
was never addressed before. The usual restriction of the type

F
R
3
dv f0(v)(1+|v|2)=1 (3.7)

is obviously not necessary for the solution (3.5)–(3.6) to exist: f0 ¥ L
1
+(R

3)
is enough. On the other hand, it is well-known that the restriction (3.7)
guarantees that the solution f(v, t) tends, as tQ., to a Maxwellian dis-
tribution. Let us assume now that f0 ¥ L

1
+(R

3), but

F
R
3
dv f0(v) |v|2=. (3.8)

What happens with the solution f(v, t) as tQ. in this case? This question
will be considered below in some particular cases. The self-similar solutions
arise quite naturally in this case as asymptotic states for tQ..
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4. FOURIER TRANSFORM AND UNIQUENESS LEMMA

Let

f̂(k, t)=F
R
3
dv f(v, t) e−ik · v, k ¥R3 (4.1)

then the normalization in Eq. (3.1) becomes

f̂0=1 (4.2)

and the corresponding initial value problem reads (6)

f̂t=F
S2
dn g 1k ·n

|k|
2[f̂(k+) f̂(k−)− f̂(0) f̂(k)], f̂|t=0=f̂0(k) (4.3)

where

k±=1
2(k±|k| n), n ¥ S2

In the cutoff case (3.3) we similarly obtain

f̂t=Q̂+(f̂, f̂)− f̂, f̂|t=0=f̂0 (4.4)

Then one can construct the solution by a series similar to Wild’s sum
(3.5)–(3.6). In this way we show that the solution f̂(k, t) of the problem
(4.4) exists for any initial characteristic function (Fourier transform of a
probability measure) f̂0(k) and that f̂(k, t) is also a characteristic function
for any t > 0.
There are other methods, however, to construct the solution of the

problem defined in (4.4). In order to be sure that all the methods lead to
the same solution, we shall later need the following uniqueness result.

Lemma 4.1. If f̂0(k) is a characteristic function, then the solution
f̂(k, t) of the problem (4.4) is unique in the class of functions satisfying the
inequality

||f̂||R, T= sup
|k| [ R, 0 [ t [ T

|f̂(k, t)| <. (4.5)

for any R > 0 and T > 0.

Self-Similar Solutions of the Boltzmann Equation 1045



Proof. We first note that |f̂0(k)| [ f̂0(0)=1 and construct a solution
f̂W(k, t) given by Wild’s sum

f̂W(k, t)=e−t C
.

k=0
(1−e−t)n f̂n(v) (4.6)

where f̂0 is the initial characteristic function in (4.4) and

f̂n+1=
1
n+1

C
n

j=0
Q̂+(f̂j, f̂n−j), n=0, 1,... (4.7)

Q̂+(f̂, ĝ)=F
S2
dn g 1k ·n

|k|
2 f̂(k+) ĝ(k−) (4.8)

Then f̂W(k, t) is a characteristic function for any t > 0 and hence
|f̂W(k, t)| [ 1. Let us assume now that there exists another solution f̂(k, t)
of the problem (4.4), satisfying the condition (4.5). Then the function
h=f̂(k, t)− f̂W(k, t) is a solution of the following problem

ht+h=P̂h, h|t=0=0 (4.9)

where the linear operator P̂=P̂(t) is given by

P̂h=F
S2
dn gg 1

k ·n
|k|
2[f̂W(k+, t)+f̂(k+, t)] h(k− , t) (4.10)

where

gg(m)=
1
2[g(m)+g(−m)]

Eqs. (4.9) lead to

h(k, t)=F
t

0
dy e−(t−y)[P̂h](k, t) (4.11)

We denote for an arbitrary R > 0

||h||R (t)=sup
|k| [ R

|h| (k, t)

then, since

|f̂W(k, t)| [ 1, F
S2
dn gg 1

k ·n
|k|
2=1
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we have, for any 0 [ t [ T,

sup
|k| [ R

[P̂h](k, t) [ [1+||f̂||R, T] ||h||R (t)

Therefore Eq. (4.10) leads to

||h||R (t) [ [1+||f̂||R, T] F
t

0
dy ||h||R (y), 0 [ t [ T

It is well known (Gronwall’s lemma) that this inequality has the only trivial
solution ||h||R (t)=0. Hence h(k, t)=0 for any |k| [ R and any 0 [ t [ T.
However R and T are arbitrary positive numbers and therefore h=f̂(k, t)−
f̂W(k, t)=0 in R3×R+. This completes the proof.

5. SPECIAL CLASSES OF SOLUTIONS

The aim of this section is to construct some solutions with infinite
second moments in a more explicit form and to study them in more detail.
We consider isotropic distribution functions f(|v|, t) and the corre-

sponding characteristic functions

f̂(|k|, t)=f(x, t), x=|k|2/2 (5.1)

Then the equation for f(x, t) reads

ft=F
1

0
ds G(s)[f(sx) f((1−s) x)−f(0) f(x)] (5.2)

where

G(s)=4pg(1−2s), 0 [ s [ 1 (5.3)

Noting that

f(0, t)=F
R
3
dv f(v)=1; fŒ(0, t)=− 13 F

R
3
dv f(v) |v|2 (5.4)

we see that an infinite second moment (3.8) corresponds to the case
fŒ(x)Q −. as xQ 0+. The typical behavior of characteristic functions of
this kind near the origin is described by the following asymptotic formula:

f(x)=1−axa[1+O(xa)], xQ 0+, 0 < a < 1, a > 0 (5.5)
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Having in mind the usual class of rapidly decreasing functions (19) with
a=1, we extend this class to real positive values of a by letting:

f(x)=C
.

n=0
fn

xna

C(na+1)
, a > 0 (5.6)

Such solutions were considered earlier (4) for a > 1; here we shall use a
similar approach for 0 < a < 1. A peculiar aspect of this case is that we
cannot expect relaxation to any steady state as tQ.. If one looks for the
solution in the form (5.6) and substitute the series (5.6) into Eq. (5.2), then
the first coefficients can be found immediately:

f0(t)=1, f1(t)=f1(0) elat (5.7)

where

la=l(a)=F
1

0
ds G(s)[sa+(1−s)a−1] > 0, 0 < a < 1 (5.8)

In other words, the solution (5.6) with 0 < a < 1 behaves for small x
like

f(x, t) 5 1−axaelat=1−a(xemat)a, ma=
la

a

Therefore it is convenient to fix a certain value 0 < a < 1 and to represent
the corresponding solution (5.6) in the form:

f(x, t)=k(xemat, t), ma=
la

a
, 0 < a < 1 (5.9)

where la is given by (5.8). The function k(x, t) obviously satisfies the
equation

kt+maxkx=F
1

0
ds G(s)[k(sx) k((1−s) x)−k(0) k(x)] (5.10)

with the same initial condition

k|t=0=f|t=0=f0 (5.11)
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Substituting the series

k(x, t)=C
.

n=0
kn(t)

xna

C(na+1)
(5.12)

into the equation (5.10), we obtain the following set of recurrence equations:

dk0
dt
=
dk1
dt
=0

dkn
dt
+cn(a) kn=C

n−1

j=1
Ba(j, n−j) kjkn−j, n=2, 3,...

(5.13)

where

cn(a)=nama−l(na)=nla−l(na)

l(p)=F
1

0
ds G(s)[sp+(1−s)p−1]

Ba(j, l)=
C(na+1)

C(ja+1) C(la+1)
F
1

0
ds G(s) s ja(1−s) la, n \ 2

(5.14)

Noting that lŒ(p) < 0 for any p > 0, we get the following estimates:

cn(a)=nl(a)−l(na) \ (n−1) l(a) (5.15)

and cn(a) > 0 if n \ 2. The recurrence relations for the coefficients kn(t)
follow from Eq. (5.13):

kn(t)=kn(0) e−cn(a) t+C
n−1

j=1
Ba(j, n−j) F

t

0
dy e−cn(a)(t−y)kj(y) kn−j(y),

n=2, 3,... (5.16)

It is obvious from these formulas and from Eqs. (5.14) that

kn(t)QtQ. un, n=0, 1,... (5.17)

where {un} is the unique steady solution of (5.13) given by the recurrence
formulas:

u0=1, u1=k1, un=
1
cn(a)

C
n−1

j=1
Ba(j, n−j) ujun−j, n=2, 3,... (5.18)
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Until now our considerations on Eq. (5.4) have been quite formal
since nothing was said about the convergence of the series (5.12). In order
to make it rigorous we assume that there exists a number A such that

|kn(0)| [ An , n=1, 2,... (5.19)

and try to prove a similar estimate (with another number A1 \ A) for kn(t)
uniformly for t ¥ [0,.). An estimate of this kind guarantees the conver-
gence of the series (5.12) for all x, t \ 0.
To this end, we first prove the following lemma, providing a useful

estimate, holding, in particular, for true Maxwellian molecules.

Lemma 5.1. If 0 [ G(s) [ as−(1+c) for some a > 0 and 0 < c < 1,
then there exists a number R=R(a, c), such that, for any a > c,

1
n−1

C
n−1

j=1
Ba(j, n−j) [ aR(a, c), n=2, 3,... (5.20)

where the coefficients Ba(j, l) are given by Eqs. (5.14).

Proof. We shall use below two well-known formulas for the Beta-
and Gamma-functions:

F
1

0
ds sx−1(1−s)y−1=

C(x) C(y)
C(x+y)

, lim
zQ.

C(z) za

C(z+a)
=1 (5.21)

The first of these formulas combined with the assumptions of the lemma
leads to the following inequality:

Ba(j, n−j) [ a
C(ja− c) C(na+1)
C(ja+1) C(na+1− c)

hence

1
n−1

C
n−1

j=1
Ba(j, n−j) [ a

C(na+1)
(n−1) C(na+1− c)

C
n−1

j=1

C(ja− c)
C(ja+1)

n=2, 3,...
(5.22)

The second formula in (5.21) shows that

C(ja− c)
C(ja+1)

5jQ. (ja)−(1+c),
C(na+1)
C(na+1− c)

5nQ. (na)c
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Therefore

S(a, c)=C
.

j=1

C(ja− c)
C(ja+1)

<.

q(a, c)= sup
n=2, 3,...

C(na+1)
(n−1) C(na+1− c)

<.

Substituting these estimates into inequality (5.22), we obtain inequality
(5.20) with R=qS and the lemma is proved.

Remark. The case of true Maxwell molecules corresponds to
c=1/4.

Now we can easily obtain the estimates we need for kn(t), as given by
Eqs. (5.16).

Lemma 5.2. If 0 [ G(s) [ as−(1+c) for some a > 0 and 0 < c < 1, and
the inequalities (5.19) hold for some A > 0, then for any a > c and any t \ 0

|kn(t)| [ An 51+
a
l(a)

R(a, c)6
n−1

, n=1, 2,... (5.23)

where l(a) is given by Eq. (5.14), R(a, c) is defined in the previous lemma.

Proof. The estimate (5.23) is obvious for n=1 since k1(t)=k1(0)
according to Eq. (5.16). Therefore we proceed by induction and assume
the estimate (5.23) for n=1, 2,..., m−1 with an arbitrary m \ 2. Then
Eq. (5.16) with n=m yields

|km(t)| [ Am 5e−cm(a) t+bm−2 C
m−1

j=1
Ba(j, m−j)

1−e−cm(a) t

cm(a)
6

where

b=1+
a
l(a)

R(a, c), 1 > a > c > 0

Self-Similar Solutions of the Boltzmann Equation 1051



The inequality (5.15) for cm(a) and obvious estimates for e−cm(a) t lead to

|km(t)| [ Am 51+
bm−2

l(a)
1
m−1

C
m−1

j=1
Ba(j, m−j)6

[ Am 51+b
m−2

l(a)
aR(a, c)6

where the second inequality follows from the previous lemma. Hence

|km(t)| [ Am[1+bm−2(b−1)] [ Ambm−1, m \ 2

since b > 1. This completes the proof.
A similar result can be obtained for the coefficients {un} given by the

recurrence relations (5.18).

Lemma 5.3. Under the assumptions of Lemma 5.1 the following
estimate is valid

|un(t)| [ |u1 |n 5
a
l(a)

R(a, c)6
n−1

, n=1, 2,... (5.24)

The proof is merely a simplified repetition of the proof of Lemma 5.2.
Lemma 5.2 gives sufficient restrictions on G(s) and on the initial data

f(x, 0)=f0(x) for the solution f(x, t) of Eq. (5.2) to be represented by a
series of the form (5.6) convergent for all x > 0 uniformly on t ¥ [0,.).
Some asymptotic properties of the solution are studied in Section 6.

6. SELF-SIMILAR SOLUTIONS AS ASYMPTOTIC STATES

The main results of Section 5 can be formulated in the following way.
We consider Eq. (5.2) and assume that

(A) There exist two numbers a > 0 and 0 < c < 1 such that

0 [ G(s) [ as−(1+c), 0 < s < 1 (6.1)

(B) the initial condition has the following form:

f(x, 0)=f0(x)=C
.

n=0
f (0)n

xna

C(na+1)
, f (0)0 =1, f

(0)
1 ] 0 (6.2)
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with some c < a < 1 and such that

sup
n=1, 2,...

|f (0)n |
1/n <.

Theorem 6.1. Under assumptions (A) and (B) there exists a unique
solution of Eq. (5.2) satisfying the initial condition (6.2) and represented in
the form

f(x, t)=k(xemat, t), ma=
1
a
F
1

0
ds G(s)[sa+(1−s)a−1] > 0 (6.3)

where k(x, t) is given by formulas (5.12), (5.16). The series (5.12) converges
for all x > 0; moreover, supn=1, 2,... |kn(t)|1/n < a for all t > 0 and some con-
stant a depending only on G(s) and on the initial conditions.

The proof follows from the above described construction of the
solution and from Lemma 5.2. The solution is unique, by the standard
uniqueness theorem on ODEs and is given, by construction, by (5.12),
(5.16).
Our second result concerns self-similar solutions and their connection

with the solutions described by Theorem 6.1.

Theorem 6.2. If G(s) satisfies assumption (A) with some c > 1, then
for any number ma given by (6.3) with c < a < 1, there exists a self-similar
solution f(x, t)=u(a)(xemat) given by the following series:

u (a)(x)=C
.

n=0
u (a)n

xna

C(na+1)
, sup

n=1, 2,...
|u (a)n |

1/n <. (6.4)

where u (a)0 =1, u
(a)
1 ] 0 can be chosen arbitrarily and u (a)n (n \ 2) are given

by the recurrence formulas in (5.18). If k(x, t) is the function defined in
Theorem 6.1 (for a given value of a), then

lim
tQ.
k(x, t)=u(a)(x) (6.5)

for any x \ 0, provided u (a)1 =k1(0).

The proof is based on the construction described in the previous
section (the function u (a) is obviously a steady solution of Eq. (5.10)) and
on Lemmas 5.2 and 5.3. It was already shown in Section 5 (see Eq. (5.17))
that u (a)(x) is formally the limit of the series (5.12) as tQ.. On the other
hand, for any x > 0 the series converges uniformly on t ¥ [0,.) (Lemma 5.2).
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Therefore the limit is rigorously justified. The inequality (6.4) follows from
Lemma 5.3. Thus the theorem is proved.
Theorem 6.2 explains the exact meaning of the asymptotic equality

f(x, t)=k(xemat, t) 5tQ. u (a)(xemat) (6.6)

and the corresponding relation

f(|v|, t)=e−
3
2
matF(|v|, t) e−

1
2
mat, t) 5tQ. e−

3
2
matFa(|v| e−

1
2
mat) (6.7)

where

F
R
3
dv Fa(|v|, t) e−ik · v=u (a)(|k|2/2) (6.8)

for the corresponding solutions of the Boltzmann equation (3.2). We stress
that the transition from (6.6) to Eq. (6.7) is not justified as yet, since we
still must prove that u (a)(|k|2/2) is a characteristic function.
In order to do this, we first assume G(s) to be bounded and use the

uniqueness result proved in Section 5. Lemma 5.1 shows the following: if
any characteristic function f0(|k|2/2) can be represented in the form (6.2)
with x=|k|2/2, then the corresponding solution f(x, t) is a characteristic
function at any t > 0, and so is k(x, t) given by (6.3). On the other hand
u (a)(x) is a pointwise limit of k(x, t) as tQ., and is obviously continuous
at x=0. These properties are sufficient to establish that u (a)(x) is also a
characteristic function. (20)

The case of true Maxwell molecules (Lemma 4.1 was proved only for
integrable cross sections) can be considered in a similar way. First we
approximate G(s) by integrable functions, say

GE(s)=G(s) if s > E, GE(s)=0 otherwise

with EQ 0, and construct (for a given a > c=1/4) the corresponding
characteristic functions u (a)(x; E) given by the series (6.4). Then each coef-
ficient of the series is obviously a continuous function of E at E=0. There-
fore we obtain a formal limit: uE QEQ 0 u(x). To make it rigorous it is
enough to find a uniform estimate (in E) of the ratio RE(a, c)/lE(a) in the
equality (5.24). This can be easily done since RE(a, c) and lE(a) are mono-
tonously increasing functions of E and are continuous at E=0. Hence the
convergence is uniform in E and taking the limit is justified. The final step
is again to notice that u (a)(x) is continuous at x=0 and therefore u (a)(x)
is a characteristic function. The same consideration holds for any G(s)
satisfying the condition (6.1) with some 0 < c < 1.
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To conclude we must prove that for any 0 < a < 1 there exists at least
one characteristic function (initial condition for (5.2)) represented in the
form (6.2). This can be done by a single example constructed in Section 7.
Finally we are able to formulate the result

Theorem 6.3. All self-similar solutions described in Theorem 6.2
are characteristic functions (Fourier transform of probability measures).

The proof was already given above except for the concrete example
(Mittag–Leffler’s function), which will be presented at the end of Section 7.

Remark. It seems quite probable that the corresponding self-similar
solutions (see (6.8))

f(|v|, t)=e−
3
2
matFa(|v| e−

1
2
mat)

of the Boltzmann equation are L1 functions, not measures. This conjecture
will be justified for some particular cases in Section 7. Our arguments are
not sufficient, however, to prove the conjecture in the general case.
We can obviously extend all the results of this section to a class of

initial conditions

f0(x, h)=f0(x) e−hx

where f0(x) is given by Eq. (6.2). Then the solution is given by the equality

f(x, t; h)=e−hxf(x, t; 0)

and has the asymptotics

f(x, t; h)=e−hxk(x, t; h) 5tQ. e−hxu (a)(xemat)

which follows directly from (6.6). The functions

wa, h(x, t)=e−hxu (a)(xemat), x=|k|2/2

represent a two-parameter (h > 0, c < a < 1) family of solutions invariant
with respect to an obvious semigroup. The corresponding solutions of
the Boltzmann equations exist and are non-negative as follows from
Theorem 6.3. All these invariant solutions are eternal, i.e., they satisfy the
Boltzmann equation for all t ¥ (−.,.).
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7. EXACTLY SOLVABLE CASES

Following our previous papers, (11, 12) we consider in this section the
special case G(s)=1 in Eq. (5.2). Our aim here is to study all possible
closed-form self-similar solutions in this case. As a by-product, we also
present an example of a characteristic function having the form (6.2) with
an arbitrary 0 < a < 1. This example completes the proof of Theorem 6.3.
If G(s)=1, Eq. (5.2) for self-similar solutions f(x, t)=u(xemt) leads to

muŒ(x)=
1
x
F
x

0
dy u(y) u(x−y)−u(x), u(0)=1 (7.1)

Let

y(p)=pL[u]=p F
.

0
dx u(x) e−px (7.2)

then we obtain a nonlinear ODE: (11, 12)

mp2yœ−pyŒ+y(1−y)=0, y(p)QpQ. 1 (7.3)

The case m=0 is trivial; thus we assume m ] 0. Then Eq. (7.3) can be
reduced to a standard form by the following substitutions

(a) m ] −1: y(p)=
1
2
−
1
A
51
2
−p2bw(pb)6 ,

b=
1+m
5m
, A=

1
6mb2

=
25m

6(1+m)2
;

(7.4)

(b) m=−1: y(p)=
1
2
−6w(log p) (7.5)

These substitutions lead to two equations for w(t) (we omit the inter-
mediate calculations)

(a) m ] −1: wœ=6w2+3
1−A2

2t4
(7.6)

(b) m=−1: wœ=6w2−
1
24

(7.7)
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Each of these equations has two particular solutions easy to find:

(a) w=
1±A
2t2
; (b) w=±

1
12

These solutions correspond to the trivial ones (y=0, y=1) of the original
equation.
The case m=−1 and the special case A=±1 for m ] 1 lead to the

following first order ODEs:

(a) (wŒ)2=4w3+const.; (b) (wŒ)2=4w3−
w
12
+const. (7.8)

In turn, these equations can be solved in terms of the Weierstrass elliptic
function P(t; g2, g3) satisfying the equation (21) (p. 629):

(PŒ)2=4P3−g2P−g3 (7.9)

If |A| ] 1 in Eq. (7.6), then the equation is not of the Painlevé type (see
ref. 22). It has moving logarithmic critical points and therefore does not
have any ‘‘simple’’ analytic solution.
Hence relatively simple, closed form solutions exist only for values of

m satisfying the equality

A2=
625m2

36(1+m)4
=1 (7.10)

and for m=−1. Thus there are five cases solvable in a closed form:

m=−1; m=2/3; m=3/2; m=−6; m=−1/6 (7.11)

Not all these values of m correspond to true solutions of the Boltzmann
equation (7.1) since we also need the correct asymptotics (7.3) for pQ..
The qualitative behavior of the solutions of Eq. (7.6) with |A|=1 and (7.7)
is best understood by an analogy with classical mechanics. We re-write these
equations as

(a) wœ=−
“U1
“w
, U1=−2w3 (7.12)

(b) wœ=−
“U2
“w
, U2=−2w3+

w
24

(7.13)
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and consider them as the equations of motion of a mass point on a line
under an external force with potential energy Ui(w) (i=1, 2). Then it
becomes clear that the condition w(t)QtQ. −1/12 cannot be satisfied by a
solution of Eq. (7.13); thus m=−1 does not lead to the correct asymptotics.
Similarly, in the case m=−6 we need a solution of Eq. (7.12) such that
t2w(t)QtQ. 0 and this is impossible.
Hence there are only three relevant values of m:

m=2/3; m=3/2; m=−1/6

In the first two cases the solution of Eq. (7.12) must be chosen in such a
way that t2w(t)QtQ. 1. General properties of the Weierstrass function
P(t; 0, g3) show that the only possible choice is g3=0 and

w(t)=P(t; 0, 0)=
1
t2
, m=2/3, m=3/2 (7.14)

where, of course, we can change t to t+t0 with an arbitrary t0 > 0.
In the case m=−1/6, we need to satisfy the condition t2w(t)QtQ 0 0.

This condition is satisfied by a wider class of solutions w(t)=P(t+t0; 0, g3)
with arbitrary values of t0 > 0 and g3. The simplest solution of this type is

w(t)=
1

(t+t0)2
, t0 > 0, m=−1/6

The corresponding solution of Eq. (7.3) reads

y(p)=1−
1

(1+t0 p)2
, m=−1/6 (7.15)

The previous two exact solutions (see (7.14)) provide two solutions of
Eq. (7.3) in the following form:

y(p)=
1

(1+t0 p−b)2
; b=1/2, m=2/3; b=1/3, m=3/2 (7.16)

The first solution (7.15) corresponds to the well-known BKW mode
for the Boltzmann equation. (8–10) The other two cases of closed form solu-
tion (7.16) lead to the new similarity solutions found by Bobylev and
Cercignani. (11, 12) Our investigation here shows that there is practically no
hope to find any other closed form solution of Eq. (7.1).
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Let us now consider the other two solutions (7.16) found above and
invert the Laplace transform. The parameter t0 reflects the fact that Eqs.
(7.1) and (7.3) are invariant under scaling transformations; therefore it is
sufficient to consider the case t0=1. Then the solutions of Eq. (7.1) read as
follows:

u(x)=L−1 51
p

1
(1+p−b)2
6=C

.

n=0
(−1)n

(n+1) xnb

C(nb+1)
,

b=1/2 (m=2/3), b=1/3 (m=3/2)

This can be seen by taking the Laplace transform, term by term, of the
series for ub. The process is easily justified for |p| > 1, but the result is valid
for any p in the complex plane cut along the negative real semi-axis by
analytic continuation. We can see now that these solutions belong to the
general class of self-similar solutions discussed in detail in Section 6.
Methods developed in our previous paper (12) allow a much more con-

venient representation:

ub(x)=2
sin bp
bp

F
.

0

ds(1+s cos bp)
(1+s2+2s cos bp)2

e−xs
−1/b
, b=1/2, 1/3

Then we remark that x=|k|2/2 and that

e−G |k|
2/2=F[MG]=F

Rd
dvMG(|v|) exp(−ik ·v) (7.17)

whereMG(|v|) denotes the Maxwellian distribution

MG(|v|)=(2pG)−3/2 e−|v|
2/(2G) (7.18)

with ‘‘temperature’’ G > 0. Hence the corresponding self-similar solutions of
the Boltzmann equation (3.2) read:

fb(|v|, t)=e−
3
2
mbtFb(|v| e−

1
2
mbt)

Fb(|v|)=2
sin bp
bp

F
.

0

ds(1+s cos bp)
(1+s2+2s cos bp)2

MG(s)(|v|), b=1/2, 1/3

where G(s)=s−1/b. These solutions are obviously integrable functions.
We note that

e−
3
2
mtMh(|v| e−

1
2
mt)=Mh(t)(|v|), h(t)=hemt;

Mh1
(|v|)* Mh2

(|v|)=Mh1+h2
(|v|)
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Hence, the extended class (see the end of Section 6) of invariant solutions
reads

fb, c(|v|, t)=2
sin bp
bp

F
.

0

ds(1+s cos bp)
(1+s2+2s cos bp)2

Mh(s, t; b, c)

where

h(s, t; b, c)=s−1/bembt+c, c > 0, b=1/2, 1/3

Finally we construct an example needed in the proof of Theorem 6.3.
The so-called Mittag–Leffler function, (20)

f(x)=C
.

0

(−1)n

C(1+na)
xna, 0 < a < 1 (7.19)

has a relatively simple Laplace transform

L[f]=
pa−1

1+pa

and possesses the following integral representation:(12)

f(x)=
sin ap
ap

F
.

0

ds e−xs
−1/a

1+s2+2s cos pa
, 0 < a < 1 (7.20)

Equation (7.20) obviously shows that f(|k|2/2) is the Fourier transform
of a positive function of |v|. Hence the function (7.19) can be used as an
example of characteristic function represented in the form (6.2) and this
completes the proof of Theorem 6.3.

8. MORE ON ETERNAL SOLUTIONS OF THE BOLTZMANN

EQUATION

We have constructed in Sections 6 and 7 some examples of non-nega-
tive eternal solutions of the Boltzmann equation. All the solutions have,
however, an infinite second moment (energy). Can we construct any
example of eternal solution with finite energy? What can be said about the
properties of ‘‘usual’’ solutions f (with finite moments of all orders) when
we extend them to negative values of t? This section is devoted to discussing
these questions.
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We consider again just isotropic solutions f(|v|, t) and assume (in the
present section) that all moments

mn(t)=F
R
3
dv f(v, t) |v|2n, n=0, 1,... (8.1)

are finite for t \ 0. Furthermore we assume m0=1, m1=3 (conservation
laws); the corresponding Maxwellian reads:

M(|v|)=(2p)−3/2 e−|v|
2/2 (8.2)

We use again the Fourier transform (4.1), and consider the function f(x, t)
(5.1) satisfying Eq. (5.2). We slightly change the notation (5.6) and repre-
sent f(x, t) as

f(x, t)=C
.

n=0
fn
(−1)n xn

n!
, f0=1, f1=1, fn=

mn(t)
(2n+1)!!

(8.3)

The inequalities fn(t) > 0, n=2, 3,... give a necessary condition for
f(|v|, t) to be positive. It is convenient to introduce a new unknown func-
tion k(x, t) by setting

f(x, t)=e−xk(x, t); k(x, t)=C
.

n=0
kn
(−1)n xn

n!
, k0=1, k1=0

fn(t)=C
n

k=0

1n
k
2 kk(t), n=0, 1,... (8.4)

Then k(x, t) satisfies the same equation (5.2)

kt=F
1

0
ds G(s)[k(sx) k((1−s) x)−k(0) f(x)] (8.5)

and the initial condition

k|t=0=k0(x)=exf|t=0 (8.6)

Equations for kn(t) follow from (8.4), (8.5):

k0=1, k1=0;
dki
dt
−liki=0, i=2, 3

dkn
dt
−l(n) kn=C

n−2

j=2
B1(j, n−j) kjkn−j, n=4, 5,... (8.7)
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in the notation (5.14). We also notice that the values

fg(x)=e−x, kg(x)=1; fg
n=1. kg

n=0, n=1, 2,...

correspond to the Maxwellian (8.2). Now we can prove the first result of
this section.

Theorem 8.1. Let f(|v|, t) be an eternal solution of the Boltzmann
equation such that 0 < mn(t) <. (n=0, 1,...; see (8.1)) for all −. <
t <.. Then f(|v|, t)=f(|v|, 0) is a Maxwellian distribution function.

Proof. We assume without loss of generality that m0=1, m1=3.
Then the only possible Maxwellian is given by Eq. (8.2). If f(|v|, 0) ]
M(|v|), them k0(x) ] 1 in Eq. (8.6). We consider Eqs. (8.7) with the most
general initial condition (p \ 2):

ki|t=0=0, 1 [ i [ p−1; kp|t=0=k
(0)
p ] 0;

kn|t=0=k
(0)
n , n=p+1,...

(8.8)

It is easy to find kn(t) with 2 [ n [ 2p, since, by recursion

ki(t)=0, 1 [ i [ p−1

and

dkn
dt
−l(n) kn=0, n=p..., 2p−1;

dk2p
dt
−l(2p) k2p=B1(p, p) k

2
p

Therefore we obtain

ki(t)=k
(0)
i e

l(i) t, i=p,..., 2p−1; kp|t=0=k
(0)
p ] 0

k2p(t)=[k
(0)
2p+A] e

l(2p) t−Ae2l(p), A=
B1(p, p)

l(2p)−2l(p)
[k (0)p ]

2 > 0
(8.9)

The inequality A > 0 follows from the general properties of eigenvalues
(5.14): (19)

l(n) < 0, l(n+1) < l(n), l(n)+l(m) < l(n+m), n, m=2,...
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Let us consider now the coefficient f2p(t) of the series (8.3). By using Eqs.
(8.4), (8.9), we obtain:

f2p= C
2p−1

k=p

1n
k
2 k (0)k el(k) t+[k (0)2p+A] el(2p) t−Ae2l(p) t, A > 0

Noting that

l(p) < 0, |2l(p)| > max
p [ k [ 2p

|l(k)|

we conclude that there exists a T > 0 such that

f2p=
m2p(t)
(4p+1)!!

< 0, if t < −T

This contradicts the assumption of the theorem and hence f(|v|, 0)=
M(|v|). Hence f(|v|, t)=M(|v|), since M(|v|) is a steady solution of the
Boltzmann equation (3.2). The proof is completed.

Remark. The moment equations (8.7) always hold independently of
the convergence or divergence of the series (8.3). The only condition for the
nth equation to hold is the boundedness of mk(t) for 0 [ k [ n at some
time instant, say at t=0.
Thus any positive initial condition f(|v|, 0) ]M(|v|) possessing all the

moments leads to a solution f(|v|, t) which cannot be positive for all t < 0.
The solution f(|v|, t) can, of course, blow up at some t0 < 0; this seems to
be the most typical behavior.
On the other hand, eternal (nonpositive) solutions with all moments

finite do exist, as was shown in ref. 12. We discuss some asymptotic prop-
erties of such solutions for tQ −..
In order to study Eqs. (8.5)–(8.7) for t < 0, we temporarily denote

t̃=−t and then omit tildas. We obtain:

dki
dt
+liki=0, i=2, 3

dkn
dt
+l(n) kn=−C

n−2

j=2
B1(j, n−j) kjkn−j, n=4, 5,..., t > 0

(8.10)
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and again consider the most general initial conditions (8.8), following the
same idea as in Section 5. By setting

kn(t)=unenmpt, mp=−
lp

p
> 0 (8.11)

with the same values p \ 2 as in Eqs. (8.8), we obtain

duk
dt
+cp(k) uk=0, k=2,..., 2p−1; cp(k)=kmp+l(k)

dun
dt
+cp(n) un=−C

n−p

j=p
B1(j, (n−j)) ujun−j, n=2p,..., t > 0

(8.12)

since u1(t)=· · ·=up−1(t)=0 because of the initial condition (8.8). It can
be shown (by considerations similar to those in ref. 19) that

cp(p)=0, cp(n) > 0 if n \ p+1, p \ 3

Therefore we construct the solution of Eqs. (8.12) in the same way as we
did in Section 5. This leads to the following asymptotics for tQ.:

(1) If p \ 3, then un(t)QtQ. 0 if n ] mp, m=1, 2,... . If n=mp then
ump(t)QtQ. y

(p)
m , where y

(p)
1 =k

(0)
p ] 0, and y (p)m with m \ 2 is defined by

the following recurrence relations:

y (p)m =−
1

cp(pm)
C
m−1

j=1
B1(jp, (m−j) p) y

(p)
j y

(p)
m−j (8.13)

(2) If p=2, then un(t)QtQ. yn, n=2, 3,..., where

y2=k2 ] 0, y3=k3 ] 0; yn=−
1
c2(n)

C
n−2

j=2
B1(j, n−j) yj yn−j, n=4,...

(8.14)

The special case p=2 arises because of the well-known degeneracy (19)

m2=m3. We discuss below these results in the notation (8.5) for positive
and negative t.

Remark. The above asymptotics becomes almost obvious if we
remark that Eqs. (8.13), (8.14) describe a unique nontrivial steady solution
of Eqs. (8.12) related to the initial condition (8.8).
We discuss below the results in the ‘‘normal’’ notation (8.5) for posi-

tive and negative values of t.
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Theorem 8.2. Let f(v, t) satisfy the Boltzmann equation (3.2) for
all t < 0. We assume that (1+|v|2N) f(v, t) ¥ L1(R3), N \ 2, and set

fn(t)=
mn(t)
(2n+1)!!

, n=0, 1,..., N, t [ 0

in the notation (8.3).Then the initial conditions satisfying

f0(0)=f1(0)=· · ·=fp−1(0)=1, fp(0) ] 1

for a given 2 [ p [N lead to the following asymptotics

f0=f1=1, lim
tQ −.

enmptfn(t)=yn, n=2,..., N

where

mp=
1
p
F
1

0
ds G(s)[1−sp−(1−s)p] > 0

and yn is given by the recurrence formulas (8.13) for p \ 3 and (8.14) for
p=2.

Proof. First we note that (see (8.4))

fn(t)=C
n

k=0

1n
k
2 kk(t), n=0, 1,..., N

and that Eq, (8.7) for kn(t) hold even if the higher moments (with n > N)
do not exist finite. Eqs. (8.11) lead to

fn(t)=C
n

k=0

1n
k
2 uk(t) ekmp |t|, n=0, 1,..., N, t < 0

therefore

lim
tQ −.

enmptfn(t)= lim
tQ −.

un(|t|)+C
n−1

k=0

1n
k
2 lim
tQ −.

uk(t) e−(n−k) mp |t|, n=2,..., N

It has been explained already how to prove the asymptotic formulas for
un(|t|), and we can conclude provided we admit that cp(n) > 0 if n \ p+1,
p \ 3. For brevity, the elementary proof of this inequality, based on the
convexity of l(p) (5.14) and on the equality m2=m3 is left to the reader.
This completes the proof of the theorem.
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Theorem 8.2 applied to the case N=. (all moments exist finite)
shows that formally

f(v, t) 5tQ −. e
3
2
mptF(|v| e

1
2
mpt) (8.15)

where

1
(2n+1)!!

F
R
3
dv F(|v|) |v|2n=yn, n=2... (8.16)

and the convergence in Eq. (8.15) is understood in the sense of convergence
of all moments. The asymptotic equality (8.15) makes sense provided a
function F(|v|) with the assigned moments yn exists. The existence of such
an F(|v|), as we shall see below, can be easily proved just for one special
case (BKW mode). In all other cases, however, it seems quite probable that
an F(|v|) satisfying (8.16) does not exist. This, in turn, makes it doubtful
that the corresponding solutions f(|v|, t) exist for all t < 0, i.e., do not blow
up at some t=−T < 0.
In order to examine the existence of F(|v|), we note that formally

(since we do not know if F(|v|) exists) we have

F
R
3
dv F(|v|) e−ik · v=y(|k|2/2) (8.17)

where

y(x)=C
.

n=0
yn
(−1)n xn

n!
, y=1, y1=1 (8.18)

and yn, n \ 2, are given by Eqs. (8.13) (p \ 3) or Eqs. (8.14) (p=2). It is
convenient to use the notation (8.18) for p=2 and the notation

y (p)(x)=1+C
.

n=1
y (p)n
(−x)np

(np)!
(8.19)

for p \ 3 (in agreement with Eqs. (8.13), (8.14)).
We note that

k(x, t)=y(xe−m2t), k (p)(x, t)=y(p)(xe−mpt), p \ 3 (8.20)

are self-similar solutions of Eq. (8.5) constructed and studied long ago. (4, 6)

In particular, it is known that the functions (8.18), (8.19), extended to
complex values of x, are entire analytic function of the exponential type.
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Roughly speaking, a typical asymptotic behavior of such functions is given
by the asymptotic equality

log |y(re ih)| 5rQ. a(h) r, 0 [ h < 2p

On the other hand, the case a(0) \ 0 contradicts the assumption
(8.17). Hence we need to study the behavior of the functions (8.18), (8.19)
for large positive x. There is an essential difference between the cases p=2
and p \ 3. Equations (8.12) for p \ 3 contain just one free parameter y (p)1 .
Furthermore

y (p)(x)=1− C
.

n=1

a (p)n
(np)!

[(−1)p+1y1xp]n (8.21)

where a (p)n > 0 are given by the following equalities:

a1=1, a (p)n =
1

cp(pn)
C
n−1

j=1
B1(j, n−j) a

(p)
j a

(p)
(n−j) p, n=2,...

for p \ 3. Hence y (p)(x) can be bounded just in the case when (−1)p+1 y1
< 0 provided the function (8.21) with y1=(−1)p is bounded. Thus in the
case p \ 3 everything depends on the boundedness of some function having
no free parameters.
The case p=2 is special since in Eq. (8.13) we have two parameters y2

and y3. One of them merely corresponds to the change of variables xQ ax,
a=const., and in this there is no difference with the case p \ 3. For p=2,
however, we have a further parameter, which can be used to control the
asymptotic behavior for large x. And we already know (BKW mode from
ref. 11) the combination of y1 and y2 leading to the bounded solution

y(x)=e−ax(1+ax), a > 0, y2=−a2/2, y3=−a2/3 (8.22)

The corresponding self-similar solution k(x, t)=y(xe−m2t) is universal:
it satisfies Eq. (8.5) for any kernel G(s). In the case G(s)=1 considered in
detail in Section 7, it can be proved on the basis of ODE (7.3) that the
function (8.22) is the unique bounded function in the whole class given by
Eqs. (8.12), (8.13). It seems quite probable that this is also true for the
general kernel G(s) though we did not prove this.
Hence, at least in the case G(s)=1, the asymptotic equality (8.15)

makes sense only if p=2 and y(x) is given by Eq. (8.22). Then the set of
eternal solutions f(|v|, t) of this kind (to be eternal, they must, of course,
be defined for t > 0 as well) is rather small, since the initial conditions must
satisfy the restrictions (8.22) for k (0)i =yi, i=2, 3. On the other hand, this
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shows a specific role of the BKW self-similar solution (8.20), (8.22) as the
only possible asymptotic state for the eternal solutions with finite moments
of all orders. This conclusion can be considered as an answer to the so-
called Krook–Wu conjecture (14) which was extensively discussed in the
1970s–1980s: does this simple solution play any special (asymptotic) role?
The answer we give is ‘‘yes,’’ but in the non-physical domain of large
negative times and partly negative solutions.
Finally we note that the function fae−Gx, G > 0, where fa(x, t) is given

by Eqs. (8.20), (8.22), is also an exact solution of Eq. (5.2). Therefore we
obtain the following one-parameter family of eternal solutions of the
Boltzmann equation (3.2)

fG(|v|, t)=51+
e−mt

G(t)
13− |v|

2)
G(t)
26MG(t)(|v|)

whereMG(|v|) is given by Eq. (7.18),

G(t)=G+e−mt, m=F
1

0
ds G(s) s(1−s), G \ 0, t ¥ (−.,.)

We do not know whether any other nontrivial eternal solutions having
finite moments exist. The above (heuristic) arguments show that such solu-
tions, if they exist, must have the same asymptotic behavior (for tQ −.)
as the exact solutions fG(|v|, t).

9. CONCLUDING REMARKS

As has been noticed by many authors, starting with McKean, (23) there
is a strong analogy between the central limit theorem and the trend to
equilibrium for the spatially homogeneous Boltzmann equation. This
analogy is best seen in the case of Maxwellian molecules, because of the
similarity between the action of the gain term with its properties similar to
those of a convolution, which enable us to mimic some of the important
inequalities and proofs of the central limit theorem, in the context of the
Boltzmann equation.
We have investigated the question : what is the asymptotic behavior of

the BE when the energy is infinite?
In probability theory the analogous problem is the case of infinite

variance. Under this assumption, the right scaling is not, like in classical
central limit theorem,

(X1+X2+X3+·· ·+Xn)/`n
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but

(X1+X2+·· ·+Xn)/nb

for some exponent b which depends on the tail behavior of the independent
random variables Xn. Then the convergence is not towards a Gaussian, but
towards one of the so-called stable laws. The simplest of these are due to
Levy, and in the symmetric case their Fourier transforms look like e−c |k|

a

for some a which is between 0 and 2.
When one considers the Boltzmann equation with infinite energy, it is

quite possible that the solution does not converge for long times to any
reasonable distribution. However, since the energy is infinite, there is
another degree of freedom: one can rescale the velocity space in whatever
way, preserving the mass and momentum of the solution. This operation of
rescaling is time-dependent and is the analogue of the fact that when the
variance is infinite, the scaling for sums of random variables is n-dependent
(n is analogous to an exponential of the time variable in the Boltzmann
equation). We have seen that this rescaled solution converges to something:
the self-similar solutions, when rescaled, are like equilibrium distributions.
One can hope that these solutions may give qualitative information on

the profile of some unsteady situations where the energy is so high, that the
convergence to equilibrium only holds on a very slow scale.
We also remark that Toscani and Villani (24) considered the space

homogeneous Boltzmann equation for Maxwell molecules (without cutoff )
and proved a uniqueness result, which appears to be the first result of this
kind available for long-range interactions. To this end they introduced
metrics for probability measures on Rd with a vanishing first moment and
given second moment. The distance ds between two distributions with
Fourier transforms f1(k) and g1(k) was defined as

ds=sup
k ¥Rd

(|f1−g1| |k|−s)

They proved that the distance d2 between two solutions of the homoge-
neous Boltzmann equation cannot increase with time; uniqueness follows
as a corollary. The distance d2 was also applied to the central limit
theorem, which was proved with an explicit estimate of the n0 such that the
distance d2 between the nth term and the limit is less than E for n \ n0.
It seems reasonable that similar properties hold for our solutions if we

use ds (with a suitable s) rather than d2.
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